3.21.40 \(\int \frac {x^6}{\sqrt {a+b x+c x^2}} \, dx\)

Optimal. Leaf size=261 \[ -\frac {\left (7 b \left (528 a^2 c^2-680 a b^2 c+165 b^4\right )-2 c x \left (400 a^2 c^2-1176 a b^2 c+385 b^4\right )\right ) \sqrt {a+b x+c x^2}}{2560 c^6}+\frac {\left (-320 a^3 c^3+1680 a^2 b^2 c^2-1260 a b^4 c+231 b^6\right ) \tanh ^{-1}\left (\frac {b+2 c x}{2 \sqrt {c} \sqrt {a+b x+c x^2}}\right )}{1024 c^{13/2}}-\frac {b x^2 \left (77 b^2-156 a c\right ) \sqrt {a+b x+c x^2}}{320 c^4}+\frac {x^3 \left (99 b^2-100 a c\right ) \sqrt {a+b x+c x^2}}{480 c^3}-\frac {11 b x^4 \sqrt {a+b x+c x^2}}{60 c^2}+\frac {x^5 \sqrt {a+b x+c x^2}}{6 c} \]

________________________________________________________________________________________

Rubi [A]  time = 0.38, antiderivative size = 261, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 5, integrand size = 18, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.278, Rules used = {742, 832, 779, 621, 206} \begin {gather*} -\frac {\left (7 b \left (528 a^2 c^2-680 a b^2 c+165 b^4\right )-2 c x \left (400 a^2 c^2-1176 a b^2 c+385 b^4\right )\right ) \sqrt {a+b x+c x^2}}{2560 c^6}+\frac {\left (1680 a^2 b^2 c^2-320 a^3 c^3-1260 a b^4 c+231 b^6\right ) \tanh ^{-1}\left (\frac {b+2 c x}{2 \sqrt {c} \sqrt {a+b x+c x^2}}\right )}{1024 c^{13/2}}+\frac {x^3 \left (99 b^2-100 a c\right ) \sqrt {a+b x+c x^2}}{480 c^3}-\frac {b x^2 \left (77 b^2-156 a c\right ) \sqrt {a+b x+c x^2}}{320 c^4}-\frac {11 b x^4 \sqrt {a+b x+c x^2}}{60 c^2}+\frac {x^5 \sqrt {a+b x+c x^2}}{6 c} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[x^6/Sqrt[a + b*x + c*x^2],x]

[Out]

-(b*(77*b^2 - 156*a*c)*x^2*Sqrt[a + b*x + c*x^2])/(320*c^4) + ((99*b^2 - 100*a*c)*x^3*Sqrt[a + b*x + c*x^2])/(
480*c^3) - (11*b*x^4*Sqrt[a + b*x + c*x^2])/(60*c^2) + (x^5*Sqrt[a + b*x + c*x^2])/(6*c) - ((7*b*(165*b^4 - 68
0*a*b^2*c + 528*a^2*c^2) - 2*c*(385*b^4 - 1176*a*b^2*c + 400*a^2*c^2)*x)*Sqrt[a + b*x + c*x^2])/(2560*c^6) + (
(231*b^6 - 1260*a*b^4*c + 1680*a^2*b^2*c^2 - 320*a^3*c^3)*ArcTanh[(b + 2*c*x)/(2*Sqrt[c]*Sqrt[a + b*x + c*x^2]
)])/(1024*c^(13/2))

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 621

Int[1/Sqrt[(a_) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Dist[2, Subst[Int[1/(4*c - x^2), x], x, (b + 2*c*x)
/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 742

Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(e*(d + e*x)^(m - 1)
*(a + b*x + c*x^2)^(p + 1))/(c*(m + 2*p + 1)), x] + Dist[1/(c*(m + 2*p + 1)), Int[(d + e*x)^(m - 2)*Simp[c*d^2
*(m + 2*p + 1) - e*(a*e*(m - 1) + b*d*(p + 1)) + e*(2*c*d - b*e)*(m + p)*x, x]*(a + b*x + c*x^2)^p, x], x] /;
FreeQ[{a, b, c, d, e, m, p}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && NeQ[2*c*d - b*e, 0]
 && If[RationalQ[m], GtQ[m, 1], SumSimplerQ[m, -2]] && NeQ[m + 2*p + 1, 0] && IntQuadraticQ[a, b, c, d, e, m,
p, x]

Rule 779

Int[((d_.) + (e_.)*(x_))*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> -Simp[((b
*e*g*(p + 2) - c*(e*f + d*g)*(2*p + 3) - 2*c*e*g*(p + 1)*x)*(a + b*x + c*x^2)^(p + 1))/(2*c^2*(p + 1)*(2*p + 3
)), x] + Dist[(b^2*e*g*(p + 2) - 2*a*c*e*g + c*(2*c*d*f - b*(e*f + d*g))*(2*p + 3))/(2*c^2*(2*p + 3)), Int[(a
+ b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, f, g, p}, x] && NeQ[b^2 - 4*a*c, 0] &&  !LeQ[p, -1]

Rule 832

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Sim
p[(g*(d + e*x)^m*(a + b*x + c*x^2)^(p + 1))/(c*(m + 2*p + 2)), x] + Dist[1/(c*(m + 2*p + 2)), Int[(d + e*x)^(m
 - 1)*(a + b*x + c*x^2)^p*Simp[m*(c*d*f - a*e*g) + d*(2*c*f - b*g)*(p + 1) + (m*(c*e*f + c*d*g - b*e*g) + e*(p
 + 1)*(2*c*f - b*g))*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, g, p}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 -
 b*d*e + a*e^2, 0] && GtQ[m, 0] && NeQ[m + 2*p + 2, 0] && (IntegerQ[m] || IntegerQ[p] || IntegersQ[2*m, 2*p])
&&  !(IGtQ[m, 0] && EqQ[f, 0])

Rubi steps

\begin {align*} \int \frac {x^6}{\sqrt {a+b x+c x^2}} \, dx &=\frac {x^5 \sqrt {a+b x+c x^2}}{6 c}+\frac {\int \frac {x^4 \left (-5 a-\frac {11 b x}{2}\right )}{\sqrt {a+b x+c x^2}} \, dx}{6 c}\\ &=-\frac {11 b x^4 \sqrt {a+b x+c x^2}}{60 c^2}+\frac {x^5 \sqrt {a+b x+c x^2}}{6 c}+\frac {\int \frac {x^3 \left (22 a b+\frac {1}{4} \left (99 b^2-100 a c\right ) x\right )}{\sqrt {a+b x+c x^2}} \, dx}{30 c^2}\\ &=\frac {\left (99 b^2-100 a c\right ) x^3 \sqrt {a+b x+c x^2}}{480 c^3}-\frac {11 b x^4 \sqrt {a+b x+c x^2}}{60 c^2}+\frac {x^5 \sqrt {a+b x+c x^2}}{6 c}+\frac {\int \frac {x^2 \left (-\frac {3}{4} a \left (99 b^2-100 a c\right )-\frac {9}{8} b \left (77 b^2-156 a c\right ) x\right )}{\sqrt {a+b x+c x^2}} \, dx}{120 c^3}\\ &=-\frac {b \left (77 b^2-156 a c\right ) x^2 \sqrt {a+b x+c x^2}}{320 c^4}+\frac {\left (99 b^2-100 a c\right ) x^3 \sqrt {a+b x+c x^2}}{480 c^3}-\frac {11 b x^4 \sqrt {a+b x+c x^2}}{60 c^2}+\frac {x^5 \sqrt {a+b x+c x^2}}{6 c}+\frac {\int \frac {x \left (\frac {9}{4} a b \left (77 b^2-156 a c\right )+\frac {9}{16} \left (385 b^4-1176 a b^2 c+400 a^2 c^2\right ) x\right )}{\sqrt {a+b x+c x^2}} \, dx}{360 c^4}\\ &=-\frac {b \left (77 b^2-156 a c\right ) x^2 \sqrt {a+b x+c x^2}}{320 c^4}+\frac {\left (99 b^2-100 a c\right ) x^3 \sqrt {a+b x+c x^2}}{480 c^3}-\frac {11 b x^4 \sqrt {a+b x+c x^2}}{60 c^2}+\frac {x^5 \sqrt {a+b x+c x^2}}{6 c}-\frac {\left (7 b \left (165 b^4-680 a b^2 c+528 a^2 c^2\right )-2 c \left (385 b^4-1176 a b^2 c+400 a^2 c^2\right ) x\right ) \sqrt {a+b x+c x^2}}{2560 c^6}+\frac {\left (231 b^6-1260 a b^4 c+1680 a^2 b^2 c^2-320 a^3 c^3\right ) \int \frac {1}{\sqrt {a+b x+c x^2}} \, dx}{1024 c^6}\\ &=-\frac {b \left (77 b^2-156 a c\right ) x^2 \sqrt {a+b x+c x^2}}{320 c^4}+\frac {\left (99 b^2-100 a c\right ) x^3 \sqrt {a+b x+c x^2}}{480 c^3}-\frac {11 b x^4 \sqrt {a+b x+c x^2}}{60 c^2}+\frac {x^5 \sqrt {a+b x+c x^2}}{6 c}-\frac {\left (7 b \left (165 b^4-680 a b^2 c+528 a^2 c^2\right )-2 c \left (385 b^4-1176 a b^2 c+400 a^2 c^2\right ) x\right ) \sqrt {a+b x+c x^2}}{2560 c^6}+\frac {\left (231 b^6-1260 a b^4 c+1680 a^2 b^2 c^2-320 a^3 c^3\right ) \operatorname {Subst}\left (\int \frac {1}{4 c-x^2} \, dx,x,\frac {b+2 c x}{\sqrt {a+b x+c x^2}}\right )}{512 c^6}\\ &=-\frac {b \left (77 b^2-156 a c\right ) x^2 \sqrt {a+b x+c x^2}}{320 c^4}+\frac {\left (99 b^2-100 a c\right ) x^3 \sqrt {a+b x+c x^2}}{480 c^3}-\frac {11 b x^4 \sqrt {a+b x+c x^2}}{60 c^2}+\frac {x^5 \sqrt {a+b x+c x^2}}{6 c}-\frac {\left (7 b \left (165 b^4-680 a b^2 c+528 a^2 c^2\right )-2 c \left (385 b^4-1176 a b^2 c+400 a^2 c^2\right ) x\right ) \sqrt {a+b x+c x^2}}{2560 c^6}+\frac {\left (231 b^6-1260 a b^4 c+1680 a^2 b^2 c^2-320 a^3 c^3\right ) \tanh ^{-1}\left (\frac {b+2 c x}{2 \sqrt {c} \sqrt {a+b x+c x^2}}\right )}{1024 c^{13/2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.32, size = 263, normalized size = 1.01 \begin {gather*} \frac {\left (-320 a^3 c^3+1680 a^2 b^2 c^2-1260 a b^4 c+231 b^6\right ) \tanh ^{-1}\left (\frac {b+2 c x}{2 \sqrt {c} \sqrt {a+x (b+c x)}}\right )}{1024 c^{13/2}}+\frac {48 a^3 c^2 (50 c x-231 b)+8 a^2 c \left (1785 b^3-2268 b^2 c x-618 b c^2 x^2+100 c^3 x^3\right )+a \left (-3465 b^5+16590 b^4 c x+5376 b^3 c^2 x^2-1728 b^2 c^3 x^3+736 b c^4 x^4-320 c^5 x^5\right )+x \left (-3465 b^6-1155 b^5 c x+462 b^4 c^2 x^2-264 b^3 c^3 x^3+176 b^2 c^4 x^4-128 b c^5 x^5+1280 c^6 x^6\right )}{7680 c^6 \sqrt {a+x (b+c x)}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[x^6/Sqrt[a + b*x + c*x^2],x]

[Out]

(48*a^3*c^2*(-231*b + 50*c*x) + 8*a^2*c*(1785*b^3 - 2268*b^2*c*x - 618*b*c^2*x^2 + 100*c^3*x^3) + a*(-3465*b^5
 + 16590*b^4*c*x + 5376*b^3*c^2*x^2 - 1728*b^2*c^3*x^3 + 736*b*c^4*x^4 - 320*c^5*x^5) + x*(-3465*b^6 - 1155*b^
5*c*x + 462*b^4*c^2*x^2 - 264*b^3*c^3*x^3 + 176*b^2*c^4*x^4 - 128*b*c^5*x^5 + 1280*c^6*x^6))/(7680*c^6*Sqrt[a
+ x*(b + c*x)]) + ((231*b^6 - 1260*a*b^4*c + 1680*a^2*b^2*c^2 - 320*a^3*c^3)*ArcTanh[(b + 2*c*x)/(2*Sqrt[c]*Sq
rt[a + x*(b + c*x)])])/(1024*c^(13/2))

________________________________________________________________________________________

IntegrateAlgebraic [A]  time = 0.62, size = 197, normalized size = 0.75 \begin {gather*} \frac {\sqrt {a+b x+c x^2} \left (-11088 a^2 b c^2+2400 a^2 c^3 x+14280 a b^3 c-7056 a b^2 c^2 x+3744 a b c^3 x^2-1600 a c^4 x^3-3465 b^5+2310 b^4 c x-1848 b^3 c^2 x^2+1584 b^2 c^3 x^3-1408 b c^4 x^4+1280 c^5 x^5\right )}{7680 c^6}+\frac {\left (320 a^3 c^3-1680 a^2 b^2 c^2+1260 a b^4 c-231 b^6\right ) \log \left (-2 \sqrt {c} \sqrt {a+b x+c x^2}+b+2 c x\right )}{1024 c^{13/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

IntegrateAlgebraic[x^6/Sqrt[a + b*x + c*x^2],x]

[Out]

(Sqrt[a + b*x + c*x^2]*(-3465*b^5 + 14280*a*b^3*c - 11088*a^2*b*c^2 + 2310*b^4*c*x - 7056*a*b^2*c^2*x + 2400*a
^2*c^3*x - 1848*b^3*c^2*x^2 + 3744*a*b*c^3*x^2 + 1584*b^2*c^3*x^3 - 1600*a*c^4*x^3 - 1408*b*c^4*x^4 + 1280*c^5
*x^5))/(7680*c^6) + ((-231*b^6 + 1260*a*b^4*c - 1680*a^2*b^2*c^2 + 320*a^3*c^3)*Log[b + 2*c*x - 2*Sqrt[c]*Sqrt
[a + b*x + c*x^2]])/(1024*c^(13/2))

________________________________________________________________________________________

fricas [A]  time = 0.45, size = 431, normalized size = 1.65 \begin {gather*} \left [-\frac {15 \, {\left (231 \, b^{6} - 1260 \, a b^{4} c + 1680 \, a^{2} b^{2} c^{2} - 320 \, a^{3} c^{3}\right )} \sqrt {c} \log \left (-8 \, c^{2} x^{2} - 8 \, b c x - b^{2} + 4 \, \sqrt {c x^{2} + b x + a} {\left (2 \, c x + b\right )} \sqrt {c} - 4 \, a c\right ) - 4 \, {\left (1280 \, c^{6} x^{5} - 1408 \, b c^{5} x^{4} - 3465 \, b^{5} c + 14280 \, a b^{3} c^{2} - 11088 \, a^{2} b c^{3} + 16 \, {\left (99 \, b^{2} c^{4} - 100 \, a c^{5}\right )} x^{3} - 24 \, {\left (77 \, b^{3} c^{3} - 156 \, a b c^{4}\right )} x^{2} + 6 \, {\left (385 \, b^{4} c^{2} - 1176 \, a b^{2} c^{3} + 400 \, a^{2} c^{4}\right )} x\right )} \sqrt {c x^{2} + b x + a}}{30720 \, c^{7}}, -\frac {15 \, {\left (231 \, b^{6} - 1260 \, a b^{4} c + 1680 \, a^{2} b^{2} c^{2} - 320 \, a^{3} c^{3}\right )} \sqrt {-c} \arctan \left (\frac {\sqrt {c x^{2} + b x + a} {\left (2 \, c x + b\right )} \sqrt {-c}}{2 \, {\left (c^{2} x^{2} + b c x + a c\right )}}\right ) - 2 \, {\left (1280 \, c^{6} x^{5} - 1408 \, b c^{5} x^{4} - 3465 \, b^{5} c + 14280 \, a b^{3} c^{2} - 11088 \, a^{2} b c^{3} + 16 \, {\left (99 \, b^{2} c^{4} - 100 \, a c^{5}\right )} x^{3} - 24 \, {\left (77 \, b^{3} c^{3} - 156 \, a b c^{4}\right )} x^{2} + 6 \, {\left (385 \, b^{4} c^{2} - 1176 \, a b^{2} c^{3} + 400 \, a^{2} c^{4}\right )} x\right )} \sqrt {c x^{2} + b x + a}}{15360 \, c^{7}}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^6/(c*x^2+b*x+a)^(1/2),x, algorithm="fricas")

[Out]

[-1/30720*(15*(231*b^6 - 1260*a*b^4*c + 1680*a^2*b^2*c^2 - 320*a^3*c^3)*sqrt(c)*log(-8*c^2*x^2 - 8*b*c*x - b^2
 + 4*sqrt(c*x^2 + b*x + a)*(2*c*x + b)*sqrt(c) - 4*a*c) - 4*(1280*c^6*x^5 - 1408*b*c^5*x^4 - 3465*b^5*c + 1428
0*a*b^3*c^2 - 11088*a^2*b*c^3 + 16*(99*b^2*c^4 - 100*a*c^5)*x^3 - 24*(77*b^3*c^3 - 156*a*b*c^4)*x^2 + 6*(385*b
^4*c^2 - 1176*a*b^2*c^3 + 400*a^2*c^4)*x)*sqrt(c*x^2 + b*x + a))/c^7, -1/15360*(15*(231*b^6 - 1260*a*b^4*c + 1
680*a^2*b^2*c^2 - 320*a^3*c^3)*sqrt(-c)*arctan(1/2*sqrt(c*x^2 + b*x + a)*(2*c*x + b)*sqrt(-c)/(c^2*x^2 + b*c*x
 + a*c)) - 2*(1280*c^6*x^5 - 1408*b*c^5*x^4 - 3465*b^5*c + 14280*a*b^3*c^2 - 11088*a^2*b*c^3 + 16*(99*b^2*c^4
- 100*a*c^5)*x^3 - 24*(77*b^3*c^3 - 156*a*b*c^4)*x^2 + 6*(385*b^4*c^2 - 1176*a*b^2*c^3 + 400*a^2*c^4)*x)*sqrt(
c*x^2 + b*x + a))/c^7]

________________________________________________________________________________________

giac [A]  time = 0.28, size = 208, normalized size = 0.80 \begin {gather*} \frac {1}{7680} \, \sqrt {c x^{2} + b x + a} {\left (2 \, {\left (4 \, {\left (2 \, {\left (8 \, x {\left (\frac {10 \, x}{c} - \frac {11 \, b}{c^{2}}\right )} + \frac {99 \, b^{2} c^{3} - 100 \, a c^{4}}{c^{6}}\right )} x - \frac {3 \, {\left (77 \, b^{3} c^{2} - 156 \, a b c^{3}\right )}}{c^{6}}\right )} x + \frac {3 \, {\left (385 \, b^{4} c - 1176 \, a b^{2} c^{2} + 400 \, a^{2} c^{3}\right )}}{c^{6}}\right )} x - \frac {21 \, {\left (165 \, b^{5} - 680 \, a b^{3} c + 528 \, a^{2} b c^{2}\right )}}{c^{6}}\right )} - \frac {{\left (231 \, b^{6} - 1260 \, a b^{4} c + 1680 \, a^{2} b^{2} c^{2} - 320 \, a^{3} c^{3}\right )} \log \left ({\left | -2 \, {\left (\sqrt {c} x - \sqrt {c x^{2} + b x + a}\right )} \sqrt {c} - b \right |}\right )}{1024 \, c^{\frac {13}{2}}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^6/(c*x^2+b*x+a)^(1/2),x, algorithm="giac")

[Out]

1/7680*sqrt(c*x^2 + b*x + a)*(2*(4*(2*(8*x*(10*x/c - 11*b/c^2) + (99*b^2*c^3 - 100*a*c^4)/c^6)*x - 3*(77*b^3*c
^2 - 156*a*b*c^3)/c^6)*x + 3*(385*b^4*c - 1176*a*b^2*c^2 + 400*a^2*c^3)/c^6)*x - 21*(165*b^5 - 680*a*b^3*c + 5
28*a^2*b*c^2)/c^6) - 1/1024*(231*b^6 - 1260*a*b^4*c + 1680*a^2*b^2*c^2 - 320*a^3*c^3)*log(abs(-2*(sqrt(c)*x -
sqrt(c*x^2 + b*x + a))*sqrt(c) - b))/c^(13/2)

________________________________________________________________________________________

maple [A]  time = 0.09, size = 394, normalized size = 1.51 \begin {gather*} \frac {\sqrt {c \,x^{2}+b x +a}\, x^{5}}{6 c}-\frac {11 \sqrt {c \,x^{2}+b x +a}\, b \,x^{4}}{60 c^{2}}-\frac {5 \sqrt {c \,x^{2}+b x +a}\, a \,x^{3}}{24 c^{2}}+\frac {33 \sqrt {c \,x^{2}+b x +a}\, b^{2} x^{3}}{160 c^{3}}+\frac {39 \sqrt {c \,x^{2}+b x +a}\, a b \,x^{2}}{80 c^{3}}-\frac {77 \sqrt {c \,x^{2}+b x +a}\, b^{3} x^{2}}{320 c^{4}}-\frac {5 a^{3} \ln \left (\frac {c x +\frac {b}{2}}{\sqrt {c}}+\sqrt {c \,x^{2}+b x +a}\right )}{16 c^{\frac {7}{2}}}+\frac {105 a^{2} b^{2} \ln \left (\frac {c x +\frac {b}{2}}{\sqrt {c}}+\sqrt {c \,x^{2}+b x +a}\right )}{64 c^{\frac {9}{2}}}-\frac {315 a \,b^{4} \ln \left (\frac {c x +\frac {b}{2}}{\sqrt {c}}+\sqrt {c \,x^{2}+b x +a}\right )}{256 c^{\frac {11}{2}}}+\frac {231 b^{6} \ln \left (\frac {c x +\frac {b}{2}}{\sqrt {c}}+\sqrt {c \,x^{2}+b x +a}\right )}{1024 c^{\frac {13}{2}}}+\frac {5 \sqrt {c \,x^{2}+b x +a}\, a^{2} x}{16 c^{3}}-\frac {147 \sqrt {c \,x^{2}+b x +a}\, a \,b^{2} x}{160 c^{4}}+\frac {77 \sqrt {c \,x^{2}+b x +a}\, b^{4} x}{256 c^{5}}-\frac {231 \sqrt {c \,x^{2}+b x +a}\, a^{2} b}{160 c^{4}}+\frac {119 \sqrt {c \,x^{2}+b x +a}\, a \,b^{3}}{64 c^{5}}-\frac {231 \sqrt {c \,x^{2}+b x +a}\, b^{5}}{512 c^{6}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^6/(c*x^2+b*x+a)^(1/2),x)

[Out]

1/6*x^5*(c*x^2+b*x+a)^(1/2)/c-11/60*b*x^4*(c*x^2+b*x+a)^(1/2)/c^2+33/160*b^2/c^3*x^3*(c*x^2+b*x+a)^(1/2)-77/32
0*b^3/c^4*x^2*(c*x^2+b*x+a)^(1/2)+77/256*b^4/c^5*x*(c*x^2+b*x+a)^(1/2)-231/512*b^5/c^6*(c*x^2+b*x+a)^(1/2)+231
/1024*b^6/c^(13/2)*ln((c*x+1/2*b)/c^(1/2)+(c*x^2+b*x+a)^(1/2))-315/256*b^4/c^(11/2)*a*ln((c*x+1/2*b)/c^(1/2)+(
c*x^2+b*x+a)^(1/2))+119/64*b^3/c^5*a*(c*x^2+b*x+a)^(1/2)-147/160*b^2/c^4*a*x*(c*x^2+b*x+a)^(1/2)+105/64*b^2/c^
(9/2)*a^2*ln((c*x+1/2*b)/c^(1/2)+(c*x^2+b*x+a)^(1/2))+39/80*b/c^3*a*x^2*(c*x^2+b*x+a)^(1/2)-231/160*b/c^4*a^2*
(c*x^2+b*x+a)^(1/2)-5/24*a/c^2*x^3*(c*x^2+b*x+a)^(1/2)+5/16*a^2/c^3*x*(c*x^2+b*x+a)^(1/2)-5/16*a^3/c^(7/2)*ln(
(c*x+1/2*b)/c^(1/2)+(c*x^2+b*x+a)^(1/2))

________________________________________________________________________________________

maxima [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: ValueError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^6/(c*x^2+b*x+a)^(1/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError >> Computation failed since Maxima requested additional constraints; using the 'a
ssume' command before evaluation *may* help (example of legal syntax is 'assume(4*a*c-b^2>0)', see `assume?` f
or more details)Is 4*a*c-b^2 zero or nonzero?

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {x^6}{\sqrt {c\,x^2+b\,x+a}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^6/(a + b*x + c*x^2)^(1/2),x)

[Out]

int(x^6/(a + b*x + c*x^2)^(1/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {x^{6}}{\sqrt {a + b x + c x^{2}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**6/(c*x**2+b*x+a)**(1/2),x)

[Out]

Integral(x**6/sqrt(a + b*x + c*x**2), x)

________________________________________________________________________________________